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Project motivation
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e Simulations can enhance engagement, exploration of
relationships between quantities and model-building
through high levels of interactivity, prompt feedback,
implicit scaffolding and multiple representations of

concepts. [Singh, Belloni, and Christian 2006, Podolefksy et al
2010, McKagan et al 2008, Clark and Mayer 2011,
Zollmann et al 2002 etc.]

e Simulations may be particularly useful for the teaching and
learning of quantum mechanics.
— Counterintuitive nature of quantum mechanics.
— Abstract, far-removed from everyday experience.

— Simulations can help build conceptual understanding
independent of mathematical proficiency.



Thg QuVi collectis
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Simulations for physics students (50 simulations,
introductory to advanced undergraduate level)

www.st-andrews.ac.uk/~gmanim

Simulations for chemistry students studying introductory
qguantum mechanics (18 simulations, tailored
explanations and activities)

www.st-andrews.ac.uk/~qgmanim/chemistry

Simulations for the Institute of Physics new introductory
guantum mechanics curriculum (17 simulations so far)
www.st-andrews.ac.uk/~ak81/I0PSims

guantumphysics.iop.org

soon: all available at www.st-andrews.ac.uk/physics/quvis



QuVis: The University of St Andrews Quantum Mechanics Visualisation project
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Animation List | About QuVis | For Instructors | News

& Quantum Mechanics Animations

{3 Probabilistic interpretation of classical systems
-3 The hydrogen atom

{3 Photoelectric effect

{53 Probability current

-3 Wave packets

&3 The Heisenberg Uncertainty Principle
-3 Momentum probability densities

--1‘-‘_—1 The one-dimensional infinite square well
- The Finite Well

--{’_—| The Harmonic Oscillator

-7 Bound states in other one-dimensional potentials
-3 Measurement and wave function collapse
=3 One-dimensional scattering

-3 Expansion in eigenstates

-3 The sudden approximation

-3 Bound states in two-dimensional potentials
-3 Time-independent perturbation theory
&3 Three-dimensional scattering

m-£3 Multi-particle wave functions

--{':| Spin and angular momentum

-3 Density matrix

--f'_j Cuantum information
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[ [ S——
s Tirada vabprras of & Udotiaw
W Paiel

e

Problem Sets: pdf
Instructor resources: pdf

docx

docx

2D Infinite Well

——- o ¢

= Ly pE s ey
T T e i wrak wad
-

®. %

Problem Sets: pdf docx

Instructor resources: pdf docx

Femnions Bosons

P ety B b P

Problem Sets: pdf
Instructor resources: pdf

docx

docx

1D Simple Harmonic Oscillator

forinting ': o rra—

e Gemparasa of B nawkal v
amh, Aikr

I
fill

I 3
UL B
.__||I_I.|
|

Instructor resources: pdf do

Momentum Probability Density

Eneragy Densities

— o

i B b sciliator: profelfy
e




QUANTUM PHYSICS
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In general, an observable quantity @ in quantum mechanics is represented by an operator &, and the average value
obtained by repeated measurements of O on the state |) is given by the expectation value {O) = (¥|d|1).

Simulation Step-by-step Exploration | quantumphysicsiop.orz  ¥& University of St Andrews 1O Institute of Physics

The expectation value of an operator

Input state:
1
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Ezm+1n
._,—'—"_'_'_‘_
Show contrals
Consider a collimated stream of spin 1/2 two discrete streams, one with spin component
particles. The particles pass through a Stern- 5=+ %n;here, deflection upwards), the other
Gerlach apparatus (SGA), which consists of a with spin component 5 = -% {here, deflection
region of non-uniform magnetic field aligned downwards). The spin 1/2 particles have all
along a given axis, here the z-axis. The SGA been prepared in the initial state fgl?lfhliﬂ.
allows a measurement of the spin angular where |1) and |1} are the eigenstates
momentum component along this axis. For corresponding to 5. =+ % and —% respectively.

spin 1/2 particles, the particles separate into

Press the Show controls button to send particles through the 5GA and to display various quantities.
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State space

Electron spin magnitude

Blackbody radiation

Many worlds

Hamiltonian

No-cloning

Photon paths

Perturbations



Slmulatlon act|V|t|es
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e Accompanying activities aim to promote guided
exploration and sense-making, help students compare and
contrast classical and quantum situations, and interpret
their calculations with the experimental situations and data
shown in the simulations.

e Solutions to all activities available to instructors (email
ak81@st-andrews.ac.uk, for New Quantum Curriculum
simulations quantumphysics@iop.org)

e |nstructors are welcome to modify activities

"Explain how you can see these results graphically in the
simulation”.

"Using the simulation, come up with a general rule... "



The IOP New Quantum curriculum
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Review of approaches in the UK, IOP accredits
all UK physics programmes.

Freely available online resources for a first
university course in quantum physics developing
the theory using two-level systems (single
photon interference, spin % particles).

 Focus on experiments that have no classical

explanation, interpretive aspects of quantum
mechanics and quantum information theory

e Mathematically less challenging (much of the linear
algebra needed part of the resource)



Animation T Step-by-step Expluratiunw
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Comparison of one particle in a
two-dimensional well and two
particles in a one-dimensional well

The graphs show the first few wavefunctions and probability
distributions for either one particle in a two-dimensional (2D)
infinitely deep well or two distinguishable particles in a one-
dimensional (1D} infinitely deep well. Use the buttons to choose the
energies along x and y (for the one-particle case) or the energies of
the individual particles (for the two-particle case).
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Energies of the particle
along x and y

Main controls

Cne particle in a 2D
square well

. Two distinguishable
' particles in a 1D well

. One particle in a 2D
=~ rectangular well
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Simulation Step-by-step Exploration

quantumphysics.iop.org
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Interferometer experiments with photons, particles and waves

) Introduction
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Mirror 2

Phase shift in lower path

T2

Fast forward 50 counts

® Single photons

. Remove second beam splitter |

Detected counts
Detector 1: N1=0
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| Clear measurements |

Display controls
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Simulation Step-by-step Exploration
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The expectation value of an operator
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Main controls

Send spin 1/2 particles through
the Stern-Gerlach apparatus

Take more measurements

Single particle J

Continuous stream of particles |

Fast forward 50 particles J
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V| Show probabilities
¥ Show probability graph
¥ Show expectation value

¥ Show expectation value graph
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Simulation Step-by-step Exploration | quantumphysics.ioporg B4 University of St Andrews  JOP Institute of Physics
Quantum key distribution with entangled spin %2 particles
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Optimization of simulations and activities
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e |terative refinement using student feedback essential for
developing resources useful to students.
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 Example IOP simulations: 38 hours of observation sessions
with 17 student volunteers in February/May 2013 from the
St Andrews introductory level.

e Use of two simulations (single photon interference, hidden
variables) in the Boulder modern physics course

e Use of three simulations (+ entanglement) in the St
Andrews quantum physics course.

e Revisions to all simulations and activities where
appropriate

e For other QuVis simulations: observation sessions in
computer classrooms, conceptual diagnostic surveys



Example: Optimization of a simulation control
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* |n-class trials of two simulations in

Main controls

Boulder: 6 of 40 and 16 of 42 Sondisnin A2 paricias tisugh
. . " the Stern-Gerlach apparatus

Sugge5t|ons for Improvement pertalned Take more measurements

to speeding up data collection. t DL —

&mtinuous stream of particle_si

* Added “Fast-forward” control prior to < Fastforwara soparticles | >
use at St Andrews. No suggestions for
improvement (of 59) pertained to speed of data collection.

e Observation sessions: Controls typically explored top to
bottom. Justifies layout. Student comments on usefulness
of these controls.

e Control now incorporated into all simulations where data is
collected.



Future activities
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Multi-institutional observation sessions and trials in
introductory quantum courses with pre- and post-tests.
Volunteers very welcome!

Build a community of users (instructor resources,
exemplars of use, user forum).

Further simulations (+ all as HTML5/JS touchscreen
versions) and additional activities (more exploratory and
collaborative in nature). First HTML5 sims available soon.

Investigate student difficulties with the New Quantum
Curriculum. Further develop simulations based on
outcomes.



