Interactive simulations for the learning and teaching of quantum mechanics concepts

Antje Kohnle (University of St Andrews, UK)

www.st-andrews.ac.uk/~qmanim www.st-andrews.ac.uk/~ak81/IOPSims

http://quantumphysics.iop.org

IOP Institute of Physics

The QuVis team

- Development of simulations and accompanying activites:
 Antje Kohnle
- Students involved in coding: Liam Atkinson, Inna Bozhinova,
 David Canning, Christopher Carroll, Aleksejs Fomins,
 Joe Llama, Gytis Kulaitis and Martynas Prokopas
- Final year project students: Cory Benfield,
 Callum Ferguson and Bruce Torrance
- Faculty involved in evaluation: Charles Baily,
 Donatella Cassettari, Margaret Douglass, Tom Edwards,
 Noah Finkelstein, Alastair Gillies, Georg Hähner,
 Christopher Hooley, Friedrich Koenig, Natalia Korolkova
 and Bruce Sinclair

http://arxiv.org/abs/1307.1483 http://arxiv.org/abs/1307.1484 Am. J. Phys. 80 (2012) 148-153 Eur. J. Phys. 31 (2010) 1441-1455

Project motivation

- Simulations can enhance engagement, exploration of relationships between quantities and model-building through high levels of interactivity, prompt feedback, implicit scaffolding and multiple representations of concepts. [Singh, Belloni, and Christian 2006, Podolefksy et al 2010, McKagan et al 2008, Clark and Mayer 2011, Zollmann et al 2002 etc.]
- Simulations may be particularly useful for the teaching and learning of quantum mechanics.
 - Counterintuitive nature of quantum mechanics.
 - Abstract, far-removed from everyday experience.
 - Simulations can help build conceptual understanding independent of mathematical proficiency.

The QuVis collections

Simulations for physics students (50 simulations, introductory to advanced undergraduate level)

www.st-andrews.ac.uk/~qmanim

Simulations for chemistry students studying introductory quantum mechanics (18 simulations, tailored explanations and activities)

www.st-andrews.ac.uk/~qmanim/chemistry

Simulations for the Institute of Physics new introductory quantum mechanics curriculum (17 simulations so far) www.st-andrews.ac.uk/~ak81/IOPSims quantumphysics.iop.org

soon: all available at www.st-andrews.ac.uk/physics/quvis

QuVis: The University of St Andrews Quantum Mechanics Visualisation project

School of Physics & Astronomy

Animation List | About QuVis | For Instructors | News

Quantum Mechanics Animations

- The Heisenberg Uncertainty Principle
- The one-dimensional infinite square well
- The Finite Well
- The Harmonic Oscillator
- ⊕ Bound states in other one-dimensional potentials
- in the image is a second of the image is a sec
- in the last of the

- Time-independent perturbation theory
- in Three-dimensional scattering

- ⊕ Density matrix

Problem Sets: pdf Instructor resources: pdf

$$\dot{s}_z = \frac{1}{2} \, \hbar |\uparrow\rangle\langle\uparrow| - \frac{1}{2} \, \hbar |\downarrow\rangle\langle\downarrow| \; . \tag{5}$$

In general, an observable quantity O in quantum mechanics is represented by an operator δ , and the average value obtained by repeated measurements of O on the state $|\psi\rangle$ is given by the expectation value $\langle O\rangle = \langle \psi|\beta|\psi\rangle$.

Simulation activities

- Accompanying activities aim to promote guided exploration and sense-making, help students compare and contrast classical and quantum situations, and interpret their calculations with the experimental situations and data shown in the simulations.
- Solutions to all activities available to instructors (email ak81@st-andrews.ac.uk, for New Quantum Curriculum simulations quantumphysics@iop.org)
- Instructors are welcome to modify activities

"Explain how you can see these results graphically in the simulation".

"Using the simulation, come up with a general rule... ",

The IOP New Quantum curriculum

Review of approaches in the UK, IOP accredits all UK physics programmes.

Freely available online resources for a first university course in quantum physics developing the theory using two-level systems (single photon interference, spin ½ particles).

- Focus on experiments that have no classical explanation, interpretive aspects of quantum mechanics and quantum information theory
- Mathematically less challenging (much of the linear algebra needed part of the resource)

Step-by-step Exploration

Comparison of one particle in a two-dimensional well and two particles in a one-dimensional well

The graphs show the first few wavefunctions and probability distributions for either one particle in a two-dimensional (2D) infinitely deep well or two distinguishable particles in a one-dimensional (1D) infinitely deep well. Use the buttons to choose the energies along x and y (for the one-particle case) or the energies of the individual particles (for the two-particle case).

ψ²₁₃(x,y) y L

Energies Main controls

 E_4

 E_3

Energies of the particle along x and y

- One particle in a 2D square well
- Two distinguishable particles in a 1D well
- One particle in a 2D rectangular well

Find a and b!

Show introduction

Number of measurements

Total measurements: N_{tot}= 56

Outcome
$$S_z = +\frac{\hbar}{2}$$
: $N_z = 50$

Outcome
$$S_z = -\frac{\hbar}{2}$$
: $N_- = 6$

Clear measurements

Main controls

Send spin 1/2 particles through the Stern-Gerlach apparatus

Take more measurements

Single particle

Continuous stream of particles

Fast forward 50 particles

vacuum

Probabilities

Observed	Theoretical
$S_z = +\frac{\hbar}{2}$: $Prob_+ = \frac{N_+}{N_{tot}} = 0.893$	0.8
$S_z = -\frac{\hbar}{2}$: Prob_= $\frac{N}{N_{tot}}$ = 0.107	0.2

Display controls

- Show probabilities
- ✓ Show probability graph
- Show expectation value
- ✓ Show expectation value graph

Expectation value

Mean of measurement outcomes Theoretical

$$\left(\widehat{S}_{z}\right) = \left(+\frac{\hbar}{2}\right) Prob_{+} + \left(-\frac{\hbar}{2}\right) Prob_{-}$$

$$(\hat{S}_z) = 0.393 \, \hbar$$

0.3 ħ

160

150

140

170 N_{kev}

Clear measurements

0.5 N_{tot}

0.25

Optimization of simulations and activities

- Iterative refinement using student feedback essential for developing resources useful to students.
- Example IOP simulations: 38 hours of observation sessions with 17 student volunteers in February/May 2013 from the St Andrews introductory level.
- Use of two simulations (single photon interference, hidden variables) in the Boulder modern physics course
- Use of three simulations (+ entanglement) in the St Andrews quantum physics course.
- Revisions to all simulations and activities where appropriate
- For other QuVis simulations: observation sessions in computer classrooms, conceptual diagnostic surveys

Example: Optimization of a simulation control

- In-class trials of two simulations in Boulder: 6 of 40 and 16 of 42 suggestions for improvement pertained to speeding up data collection.
- Added "Fast-forward" control prior to use at St Andrews. No suggestions for improvement (of 59) pertained to speed of data collection.
- Observation sessions: Controls typically explored top to bottom. Justifies layout. Student comments on usefulness of these controls.
- Control now incorporated into all simulations where data is collected.

Future activities

- Multi-institutional observation sessions and trials in introductory quantum courses with pre- and post-tests.
 Volunteers very welcome!
- Build a community of users (instructor resources, exemplars of use, user forum).
- Further simulations (+ all as HTML5/JS touchscreen versions) and additional activities (more exploratory and collaborative in nature). First HTML5 sims available soon.
- Investigate student difficulties with the New Quantum Curriculum. Further develop simulations based on outcomes.